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The quantum corrections to the law of corresponding states are studied by calculating 
the critical pressure, temperature, and density to first order in Planck's constant h on 
an exactly soluble model. The ratio of the critical parameters to the corresponding 
classical values are found to be (po/pc~ w2= po/po= To~ToO= t -  0.67A, with 
A = hpya(mkT,)-~/~. The critical ratio is independent of h to first order. The results 
are compared with critical data for noble gases and hydrogen isotopes. 
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1. I N T R O D U C T I O N  

Assume tha t  the in te rmolecular  potent ia l  between each pa i r  o f  part icles in a fluid 
is o f  the fo rm 

~(~) = ~r (1) 

where 5b is a universal  funct ion,  and  ~ (of  d imens ion  length) and  e are parameters  
varying fi 'om one substance to another .  I t  is wel l -known predic t ion  of  classical 
stat is t ical  mechanics that  all substances for  which (1) holds have the same equa t ion  
o f  state 

p* = p*(p*, T*) (2) 

in terms o f  the reduced number  densi ty p* = pc3, t empera ture  T* = kT/e,  and pres- 

sure p *  = p~3/e. In par t i cu la r  the crit ical values pc*, Pc* are universal .  
Byk m suggested that  q u a n t u m  devia t ions  f rom this pr inciple  o f  cor responding  

states occur,  and  p r o p o s e d  to use the dimensionless  combina t ion  hplc/3(mkT~)-i/2 
as a measure  o f  the q u a n t u m  na ture  o f  a fluid. Exper imenta l  da t a  (2) on l ight fluids 
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(inert gases and hydrogen isotopes) support Byk's suggestion; p~*, To*, and p , -1  
become systematically smaller with increasing values of the Byk combination. As 
emphasized by de Boer, (3~ the Byk parameter is not ideally suited for the study of 
quantum effects because the critical parameters pc and T~ are themselves influenced 
by quantum phenomena. ~ A better choice for the quantum parameter is 

A = hp~176 (3) 

where the superscript 0 always denotes the corresponding classical value. Then A 
is exactly proportional to m-a~ 2. 

The purpose of this note is to present a model calculation of the functions p,*(/l),  
T~*(A), and pc*(A) to first order in A. We were inspired by a recent study (4~ of the 
critical properties of a one-dimensional model, viz., hard rods with weak, long-range 
attraction. The one-dimensional model yielded results in qualitative agreement 
with experiments, but of course the three-dimensional version studied below is more 
relevant. 

2. M O D E L  C A L C U L A T I O N  

The model is a quantum gas with an intermolecular potential consisting of a hard 
core of diameter d, plus a very weak long-range attraction ~ = 73F(7"r). Lieb (~) 
has proved that in the so-called van der Waals limit 7' -+ 0 the equation of state 
is given by 

P = Ph --  aP 2 (4) 

Here pn is the pressure of quantum hard-sphere gas, and a = --�89 J" ~ ( r )  dr is the 
"integrated strength" of the attraction, a finite quantity in the van der Waals limit. 

The equation of state of the quantum hard-core gas is known exactly in one 
dimension, but the first quantum correction to the classical equations of state of 
hard spheres was determined only very recently. (~) The result is 

Ph(e, T)  = pn~ T) + 2 "V/2~ --  P 

to first order in the ratio of the thermal de Broglie wavelength I = h(2rrmkT)-l l  ~ 
to the diameter d of the hard core. 

We now determine the influence of the quantum correction of Eq. (5) by con- 
sidering it a perturbation upon the classical limit of Eq. (4), viz., 

pO = p O __ ap2 (6) 

Using the fact that ph~ is a function X(P) of the density only, we have in the 
immediate neighborhood of the critical point 3 

Ap = kx~ A T  + kx~' A T  A p q- �89 A T  Ap ~ + ~kTcxT Ap a (7) 

2 We are grateful to Professor J. de Boer for a helpful comment on this point. 
B This expansion is possible since Eq. (6) is analytic at the critical point, a property almost certainly 

not shared by the equation of state of real fluids. 
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Fig. 1. The reduced critical temperature, density, and pressure for light fluids. ~2j The classical 
values have been determined by requiring the experimental curve (dashed line) to fit the data for xenon. 

Here A p  = p - -  p f l ,  A T = T - -  Tf l ,  and A p  = p - -  p f l  measure the deviations 
f rom the classical critical point. Perturbat ion of  this equation with the quan tum 
correction o f  Eq. (5) yields the following critical displacements: 

3A 
Apo = --po~ _ _  

~v/2d 

3A 
A T e  = - -  T c  ~ - 

2 x / 2 d  
3A 

A p  e = _ p  o 2 V2~-d 

(8) 

In  terms of  the parameter  A this means that  

~ / ~  = p d p c ~  T d T f l =  1 
4 ~/~" pO~ d 

A (9) 

to first order in A. Numerical ly the classical critical density is 4 pfl ~-o 0.25d-a, so that 
the r ight-hand side o f  Eq. (9) equals 1 --  0,67A. 

3. D I S C U S S I O N  

Equat ion (9) predicts that  ~/pdpc  ~ PdPfl ,  and Te/T~ ~ decrease with A, to first 
order l inearly and in the same way. Figure 1 shows that  the experimental data are 
in qualitative agreement with this theoretical prediction. However,  the slope o f  the 
theoretical curve is too steep, and the data  favor a coefficient o f  A closer to --0.35. 

4 To obtain this value we need the classical equation of state for hard spheres. Up to the critical 
density both the seventh-term virial expansion and the Percus-Yevick equation are excellent re- 
presentations of the hard-sphere pressure, and both yield the quoted result. The exact Percus- 
Yevick value is p, = (~ /~  -- 7)/2~rd 3. 
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The one-dimensional version of the model yeilds 1 --  0.42A -}- O(A 2) for the ratios 
(9). We must conclude, therefore, that the very good agreement obtained by Burke 
et al. (4) with the one-dimensional model is accidental. 

Furthermore, from the basic result given in Eq. (9) follows that the critical 
ratio ~ = pc/p~kTc has no first-order dependence upon A, 

K, = K, ~ + O(A 2) (10) 

This may be taken as an encouraging result since the experimental values of K are 
almost constant (K increases only 5 ~ from Xe to He3). 

As a final point, note that the quantum displacements discussed above imply 
isotopic shifts, each isotope having its own distinct critical point. (In addition, of 
course, the interactions between the various isotope species will differ slightly from 
one another.) For Xe, which displays a range of isotopes from Xe 12~ at 0.1 ~ abun- 
dance to Xe 136 at 9 ~ abundance, Eq. (9) predicts a shift of  the critical temperature 
equal to 0.03 ~ per atomic weight unit, a large effect compared with present-day 
measuring accuracy. 
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